[image: image1.jpg]

PIP Multimedia & Training

FMP 114 Filemaker Solutions

FMP 114
Using Calculations

Building Calculations with Nested IF Statements

When creating calculations using nested IF statements, it is important to recognize that no matter how complex they look, they can always be broken down into single IF statements.

The syntax for an IF statement in FileMaker Pro is:

 If (test, result one, result two)

It might be easier to think of an IF statement as a yes/no question that determines the next action taken:

 If (question, do this if the answer is yes, do this if the answer is no)

The trick is to phrase the test so there is only a true or false (yes or no) answer possible, for example:

 If (2+3=5, "true", "false")

FileMaker first calculates "2+3=5", then processes the appropriate result, which is to display "true." Another example of test phrasing would be to guess a number from 1 to 1,000,000. If the test were phrased "number = 500,000" and the answer was no, up to 999,999 more IF statements may be required to guess the correct number. However, if the test were phrased "number > 500,000", the answer may still be no, but no more than 20 tests would be required to find the correct number. The point is, optimally phrasing the test part of an IF statement makes a big difference in how many subsequent nests are needed.

The simplest way to describe a nested IF statement is to think of an IF statement inside of an IF statement, or to use the analogy above, a series of yes/no questions designed to lead to a desired result.

In a nested IF calculation, the test part is evaluated first. Based on the result of the test (usually a false result), the next IF statement or test is evaluated. The desired result is achieved through the process of elimination from previous IF statements in the calculation.

Let's say that result two (the result you get when the test is false) is replaced by another IF statement to be processed. In this case, result two = If (test, result one, result two). Below is what the expanded IF statement looks like:

 If(test, result one, If (test, result one, result two))

In English, this would read: "IF the first test is true, process result one, or else process result two, which happens to be another IF statement."

For a different kind of nested IF, say that both results one and two are also IF statements. When we plug this back into our calculation, we get:

 If (test, If (test, result one, result two), If (test, result one, result two))

Applying the concept to an example

Let's apply the above techniques toward a real-world situation by building a nested IF calculation to age invoices into the four categories below.

 30 days or less

 31 - 60 days

 61 - 90 days

 Over 90 days

If we looked at the invoice date the first question asked would be: "Is the age of this invoice 30 days or less?" In FileMaker Pro terms, this would be:

 If (Today - Invoice Date <= 30, "30 days or less", result two)

In English, this calculation says: "If the difference between Today and the Invoice Date is less than or equal to 30, then perform result one by displaying '30 days or less,' but perform result two when this is not true."

But what if Today - Invoice Date is not less than or equal to 30 days? Since we already know the age of the invoice is greater than 30 days, we could next ask if the difference between Today and the Invoice Date is less than or equal to 60. We can substitute this for the first result two (remember result two is processed when the answer to the preceding IF statement is false). The preceding formula now becomes:

 If (Today - Invoice Date <= 30, "30 days or less",If (Today - Invoice Date<= 60, "31 - 60 days", result two))

Now the calculation says: IF the difference between Today and the Invoice Date is less than or equal to 30, perform result one, which is to display "30 days or less," or else perform result two...which is another IF statement. If the difference between Today and the Invoice Date is less than or equal to 60, then perform result one, which is to display "31 - 60 days," or else perform result two.

By now this is probably starting to feel more comfortable. To find out if the difference between Today and the Invoice Date is less than or equal to 90 and—if so—to display "61 - 90 days," we would add to the formula accordingly:

 If (Today - Invoice Date <= 30, "30 days or less",If (Today - Invoice Date <= 60, "31 - 60 days",If (Today - Invoice Date <= 90, "61 - 90 days", result two)))

At this point, it's important to appreciate that each nested IF statement is designed to eliminate the potential answers until there's only one result left. Applying this to our invoice aging calculation, if the difference is not less than 30 days, and the difference is not less than or equal to 60 days, and the difference is not less than or equal to 90 days, there is only one result left...over 90 days. It's unnecessary to add another IF statement because at this point there can be only one possible result. So the final calculation would be:

 If (Today - Invoice Date <= 30, "30 days or less",If (Today - Invoice Date <= 60, "31 - 60 days",If (Today - Invoice Date <= 90, "61 - 90 days", "Over 90 days")))

The concept of a calculation using nested IF statements is a great way to process results from a field or a group of fields to achieve a desired result. The best way to do this is to have a clear understanding of the desired results before building your calculation, one IF statement at a time. A great way to design a nested IF calculation is to try to chart it. All that's left after that is assembling the calculation by plugging the lower level calculations into the higher ones.

[image: image2.png]

Need help!

Just ask…

Calculating a Finish Date from a Start Date & the Number of Work Days

Given a starting date and a number of working days, an ending date can be calculated. This calculation assumes your two fields are named StartDate (date field) and WorkDays (number field), and there are five working days per week.

Here's the logic:

1.
Since there are five working days per week, convert each five working days into seven actual days.

2.
For those extra days that do not make up a group of five, add them to the starting date.

3.
If the ending date falls on either a weekend or across a weekend, add two more days.

From logic step #1, use the Int() function, dividing by five, to determine the number of five day multiples, or actual weeks. With this result, multiply by seven to get the number of actual days. That is,

 Int (WorkDays/5) * 7

From step #2, use the Mod() function to determine the excess days over the five day multiples. That is,

 Mod (WorkDays,5)

The difficult step is logic step #3 - determining if the excess days takes us across a weekend. For example, if the Starting Date is a Friday, and one day is added, then somehow, we want to return the following Monday.

The chart below will help us determine the ending day of the week given the Starting day of the week (left column) and the the number of excess work days over the five day multiple (top row).

Work Days
0
1
2
3
4

Sunday
 M
Tu
W
Th
F

Monday
 M
Tu
W
Th
F

Tuesday
Tu
W
Th
F
M

Wednesday
W
Th
F
M
Tu

Thursday
Th
F
M
Tu
W

Friday
F
M
Tu
W
Th

Saturday
M
Tu
W
Th
F

Sunday and Saturday are included in case StartDate is accidentally entered as a weekend date. That is, if the StartDate is a Sunday, and the excess multiple is zero, we don't want to return Sunday, but the following Monday. Using the chart, for a StartDate of Wednesday and three excess days brings us to the following Monday.

Now, change the table so that the number of actual days replaces the day of the week:

Work Days

0 1 2 3 4

Sunday

1 2 3 4 5

Monday

0 1 2 3 4

Tuesday

0 1 2 3 6

Wednesday

0 1 2 5 6

Thursday

0 1 4 5 6

Friday
0 3 4 5 6

To determine the day of the week for StartDate, we can use the Mod() function (with 7) and subtract a known Sunday date from StartDate (The first known Sunday date in the Macintosh system is January 3, 1904). This results in a value from zero (Sunday) through six (Saturday). If the result is Wednesday (value returned is 3), somehow, we want to drop down to the Wednesday row. Then, determine the number of excess work days above a multiple of five and move across to obtain the appropriate number of actual days.

This can all be accomplished by putting the entire table into one string, one row following the next. That is,

 "12345012340123601256014560345623456"

To find the correct grouping, first find the day of the week that StartDate occurs, and then multiply by five (since each grouping contains five values - zero through four).

 Mod (StartDate - Date (1, 3, 1904), 7) * 5

Now, find the excess days above a multiple of 5 (from logic step #2 above)

 Mod (WorkDays, 5)

Now to obtain the correct value, add one to all of this to obtain the appropriate value. For example, if StartDate is a Sunday (returns zero from first Mod() function), and excess days is zero, it leaves us at the beginning of the string. Therefore, add one to get us to the first position.

Calculating a Person's Age

These calculations compare the value in an existing date field called "Birthdate" in conjunction with the value obtained using the Today function.

The following formula displays a person's age in

the text format of "yy Years, xx Months, zz Days":

Full Age

FullAge (calculation, text result) =

NumToText (Year (Today) - Year (Birthdate) - If (Today < Date (Month (Birthdate), Day (Birthdate), Year (Today)), 1, 0)) & " Years, " & NumToText (Mod (Month (Today) -

Month(Birthdate) + 12 - If (Day (Today) < Day (Birthdate), 1, 0), 12)) & " Months, " & NumToText (Day (Today) - Day (Birthdate) + If (Day (Today) >= Day (Birthdate), 0, If (Day (Today - Day (Today)) < Day (Birthdate), Day (Birthdate), Day (Today - Day (Today))))) & " Days"

Comparison of the IF and Case Statements

You can obtain the same calculation results whether you use the If statement or the Case statement, but as you can see from the following example the Case statement requires fewer parameters for the same equation.

If(Score > 90, "Excellent", If(Score > 80, "Very Good", If(Score > 50, "Satisfactory", "Needs Improvement")))

Case(Score > 90, "Excellent", Score > 80, "Very Good", Score > 50, "Satisfactory", "Needs Improvement")

Either calculation displays Excellent when the score is above 90, Very Good when the score is above 80 Satisfactory when the score is above 50, and Needs Improvement for any other score, but use of the If statement requires you to repeat IF(for each test you want to check and it also requires that a) for each test in the equation be entered at the end of the equation.

Finding Future Dates

To use this calculation you must create 2 fields:

StartDate (Date)

Days (Number)

To find a date in the future, you simply add the number of days in the future to the existing date.

DaysFuture (Calculation, Date result) =

StartDate + Days

If StartDate was January 1, 1999 and the field Days contained a 7 the result of this calculation would be January 8, 1999.

Calculating a Blank instead of a Zero or ?

A calculation field will always result in a number, date or time if any of the fields in the formula have data (are not blank). To make a calculation field result in a blank instead of a zero, use the TextToNum, TextToDate or TextToTime function in a formula. Use TextToNum in a calculation field with a number result. Use TextToDate in a calculation field with a date result. Use TextToTime in a calculation field with a time result. Put this function inside an IF statement. Here are some sample formulas. It should be noted that a number field or calculation with a result being a number, may be formatted to be blank if the value to be displayed is zero.
Extracting Title, First, Middle, Last Name, and Suffix from a Single Field
The following calculation field definitions can extract any ordinary combination of title, first name or initial, middle name or initial, last name and suffix (e.g., Jr.) from a single name field. The formulas can correctly separate out names without a title, middle name or initial, and/ or suffix.

These calculations assume that you have the following field defined:

FullName (text) [this is the original field containing the entire name]

Title (Calculation, text result)=

If(LeftWords(FullName, 1) = "mr"

or LeftWords(FullName, 1) = "mrs"

or LeftWords(FullName, 1) = "ms"

or LeftWords(FullName, 1) = "dr",

LeftWords(FullName, 1) & ".",

If(LeftWords(FullName, 1) = "miss", LeftWords(FullName, 1), ""))

First Name (Calculation, text result)=

If(IsEmpty(Title), LeftWords(FullName, 1), MiddleWords(FullName,2, 1))

Suffix (Calculation, text result)=

If(RightWords(FullName, 1) = "II" or RightWords(FullName, 1) = "III" or

RightWords(FullName, 1) = "IV" or RightWords(FullName, 1) = "V" or

RightWords(FullName, 1) = "Sr" or RightWords(FullName, 1) = "MD" or RightWords(FullName, 1) = "DDS" , RightWords(FullName, 1),

If(RightWords(FullName, 1) = "Jr" or RightWords(FullName, 1) = "Esq"or

RightWords(FullName, 1) = "Sr" or RightWords(FullName, 1) = "MD" or RightWords(FullName, 1) = "DDS", RightWords(FullName, 1) & ".", ""))

Last Name (Calculation, text result)=

If(IsEmpty(Suffix)=1, RightWords(FullName, 1), LeftWords(RightWords(FullName, 2), 1))

MiddleName (Calculation, text result)=

Case(IsEmpty(Title) = 1 and MiddleWords(FullName, 2, 1) <> Last Name, MiddleWords(FullName, 2, 1),

IsEmpty(Title) = 0 and MiddleWords(FullName, 3, 1) <> Last Name, MiddleWords(FullName, 3, 1), "")
Formatting Numbers in a Text Calculation Field
You may wish to create a text calculation field that includes a numeric result, with a formatted number. However, a text calculation field cannot be formatted using the Format Number command (e.g.- you cannot display a fixed number of decimal places in a text field). To get around this problem, you can create a calculation field with a text result, and build the number formatting into the calculation. An example of how to do this follows.

This calculation assumes that you have a number field named:

Numberfield

Balance Due (calculation, text) =

"Your Current Balance is: $" & Int (Round (Numberfield,2)) & "." & Right (Round (Numberfield,2) * 100,2)
Calculating Elapsed Time When Ending Time is on the Same Day
This method assumes that your database has three fields: DateStart (Date), TimeStart (Time) and TimeEnd (Time). Unlike method 1, you do not need to enter the ending date. However, only use this method if your elapsed times are always shorter than 24 hours.

To calculate the elapsed time, define a calculation field called ElapsedTime with this formula:

Mod (TimeEnd - TimeStart + 86400, 86400)

Alternate formula: here's an alternative formula for method 2 that also works.

If (TimeEnd ≥ TimeStart, TimeEnd - TimeStart, TimeEnd - TimeStart + 86400)

SCRIPTS

Conditional Find Script using Status Functions

This script uses 2 layouts named:

Single Record View

Multiple Record View

You should create both of these layouts in your database before importing this script.

The following script results in one of three paths depending on how many records are found. The three possible find results are: no records, one record and many records. Here is the script:

Set Error Capture [On]

Enter Find Mode [Pause]

Perform Find []

If ["Status(CurrentFoundCount) = 1"]

Go to Layout ["Single Record View"]

Else

If ["Status(CurrentFoundCount) = 0"]

Show Message ["No records were found"]

Else

Go to Layout ["Multiple Record View"]

End If

End If

2 Scripts

ScriptMaker Tips
• When you use the Perform Script command, there are two types of scripts which can be performed: internal scripts (scripts in the current file) and external scripts (scripts in other files).

• Remember that when you use the Perform Script command to execute a script in another file, there is no need to use the Open command to open the file first.

• Whenever you are using the Go To Record command, you can go to the last record by specifying a record number which is very high, like 99999. Make sure to perform this step "Without Dialog" to avoid getting an alert (or error) message.

• Remember that whenever you exit a Find or a Sort command, you are automatically placed in Browse mode, looking at the first record in the found set or the sort order: there is no need to use an Enter Browse Mode command or to go to the first record.

• Remember to use the Refresh command with an Enter Browse Mode step if you wish to copy the values from Summary fields. However, copying a summary field in a script may not work reliably in all cases. If a script specifies a Copy step for a summary field that has not already calculated, it will copy a null value. This happens because the script progresses before the summary field is given time to calculate.

• Whenever you use the Enter Find Mode command and choose to Restore Find Requests, use the Perform Find command immediately after it. Be sure to uncheck the Restore option on the Perform Find command, if any changes to the find requests in the Enter Find Mode step will occur.

• Most script steps execute in the current file (i.e. the file where the script is defined). For example, to copy and paste between files, you will have to write two scripts: a script in the file where you want to copy and a script in the file where you wish to paste. In the script with the Copy command, include a Perform Script command that performs an external script, which uses the Paste command in the other database. You can also specify related fields within many script steps giving you access to related data.

• When you use the Cut, Copy, Paste, Clear,Paste Result, Paste from Index, Paste from Last Record, or Paste Current Date/Time/User steps, Set Field, there is no need to use a Go to Field step first; all of these commands allow you to specify a field for the operation.

• Remember that if you use the Relookup command, and you're using a calculation field as the matching value, you must specify one of the input fields for the calculation as the field parameter for the Relookup, not the calculation field (calculation fields cannot be used for the Relookup command).

• When you use the Copy command without any parameters, it copies all values from all fields on the current layout. If you use the Paste command, all of the data will paste into one field. There is no way to force FileMaker to paste the data into each destination field, though you could paste into a word processor, save as Text, and use an Import command to bring in the record (the copied information is separated by tabs).

• Use the Toggle Window command to zoom the window to full size for the current screen, if you don't know how large the monitor will be on any machine. This is a good command for a startup script.

• Use the Save a Copy As command to periodically back up your file. The script step can save a Clone, a Compressed Copy or just a Copy of the current file.

Send Mail: Including the Recipient Name in an Email Message
 The Send Mail script step allows you to specify field values for the different fields in

 your email messages. The "To:" field, for example, could take values from the Email

 Address field.

 If you wish to include the recipient name along with the email address in email messages sent from FileMaker Pro, you can create a calculation (see below) and set up the Send Mail script step to use this field. Send Mail will place the recipient name into the recipient area and the email address in the address area of your email message.

 Assuming you have first name, last name, and email address in separate fields, create a text calculation field to combine the information. One formula that works is:

Email To (calculation, text) =

 "(" & First Name & "^" & Last Name & ")" &" " & Email Address

Note: For clarity, a caret (^) has been used to indicate where you should type a space.

 Set up the Send Mail script step to use a field value for the “To:” field, and specify the

Email To calculation field.

Finding a Range of Dates Using ScriptMaker
Finding a Range of Dates Using ScriptMaker

To find a range of dates in a script:

1- Use the Paste Result step (vs. the Set Field or Paste steps)

2- Use the DatetoText function inside the Paste Result step to convert each date to text format

Your script would look like this:

Enter Find Mode []

Paste Result [“Date Field”, “DateToText(Today-14) & “...” & DateToText(Today)”]

Perform Find []

Here’s another example using global date fields:

Enter Find Mode []

Paste Result [“Date Field”, “DateToText(GlobalField1) & “...” & DateToText(GlobalField2)”]

Perform Find []

[image: image3.png]

Training prepared by

Prepared by Peter J Faulks
(PIP Multimedia & Training

PO Box 41

Riverton Forum

Phone:
9457 0747

Fax:

9457 0444

Mobile:
0416 187 937

EMail: peter@pipmultimedia.com.au
Web: http://www.pipmultimedia.com.au

�

�

Peter J Faulks
Page 1 of 10
9457 0747

